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Analysis of data from a two way factorial using contrasts and effects models

The example is the French nature/nurture IQ study. The data are in adoptiveIQ.xlsx. Background on the
study is in the background .docx file.

Reading the data and setting up factors

We will use read_excel() in the readxl library to read the .xlsx file. This is not the only way to read .xlsx
files, but this function has the most options (different worksheets, subsets of a worksheet). We will also use
emmeans functions for all the “after the ANOVA” analyses.
library(readxl)
library(emmeans)

As usual, we need to create factor versions of categorical variables.
adopt <- read_excel('adoptiveIQ.xlsx')
names(adopt)

## [1] "IQ" "Adoptive" "Biological"
adopt$adoptive.f <- as.factor(adopt$Adoptive)
adopt$biological.f <- as.factor(adopt$Biological)

If we want to use contrasts, the models need a variable that indicates each unique cell (combination of factor
levels). This can be created various ways. I concatenate the information in each factor. Later, I show how to
get R to do this “on the fly” inside the model.

paste() is the function that concatenates character strings. paste() is pretty smart so you don’t need to care
about what sort of variable is being used. Numbers are converted to character strings; factors are converted
back to their levels. The default separator is a space. You can change that with sep= a character string in
quotes.
adopt$ab <- paste(adopt$adoptive.f, adopt$biological.f, sep='/')
adopt$ab.f <- as.factor(adopt$ab)
table(adopt$ab)

##
## High/High High/Low Low/High Low/Low
## 10 10 8 10

Looking at the data

It’s always a good idea to look at the data. Here are box plots for each cell and an interaction plot of the cell
means.
par(mar=c(3,3,0,0)+0.3, mgp=c(2,0.8,0))
boxplot(IQ ~ adoptive.f + biological.f, data=adopt)
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boxplot(IQ ~ ab, data=adopt)
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# interaction plot
with(adopt,

interaction.plot(adoptive.f, biological.f, IQ))
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You can provide information to boxplot() various ways. The easiest is using a formula (has the tilde in the
middle). The left-hand side is the response variable. The right-hand side specifies how to define groups.
When you give two variables, you get all combinations (not the same behavior as when fitting a model). The
two uses of boxplot() differ only in the ordering of groups, which you could change by the order of additive
and biological in either the boxplot() call or the creating of the ab variable.

interaction.plot() is part of base R stats. The three arguments are, in order: the X axis variable, the “trace”
variable, and the response variable. The trace variable defines a line in the interaction plot. Both the X axis
and trace variables must be factors. A function is applied to the response variables to give one number per
cell. The default function is mean, but you can change that with function=.

I recommend you put the variable with the larger # levels on the X axis. It is possible to reorder groups on
the X axis by specifying the order of levels. See factor(. . . , levels=) if you want to do that. The interaction
plot is especially easy to read when the groups on the X axis are sorted by increasing mean response. Here’s
one way to do that. It uses the raw averages for each level of adoptive. You could also use the marginal
means. Sorting is not really necessary when there are only two levels.
levels(adopt$adoptive.f)

## [1] "High" "Low"
adopt.mean <- tapply(adopt$IQ, adopt$adoptive.f, mean)

adopt$adoptive.f <- factor(adopt$adoptive.f,
levels=levels(adopt$adoptive.f)[order(adopt.mean)])

levels(adopt$adoptive.f)

## [1] "Low" "High"
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with(adopt,
interaction.plot(adoptive.f, biological.f, IQ))
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1 way ANOVA followed by contrasts

Much of this will be familiar, because it is no different from what we did with 1 way ANOVA for treatments
with different types of structure.

You can provide multiple contrasts at the same time to contrasts(). Each contrast is specified by name =
vector of coefficients. Different contrasts are separated by commas.
adopt.lm <- lm(IQ ~ ab.f, data=adopt)
plot(predict(adopt.lm), resid(adopt.lm),

pch=19, col=4)
abline(h=0, lty=3)
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adopt.emm <- emmeans(adopt.lm, 'ab.f')
adopt.emm

## ab.f emmean SE df lower.CL upper.CL
## High/High 119.6 4.18 34 111.1 128
## High/Low 103.6 4.18 34 95.1 112
## Low/High 107.5 4.67 34 98.0 117
## Low/Low 92.4 4.18 34 83.9 101
##
## Confidence level used: 0.95
adopt.contrasts <- contrast(adopt.emm, list(

adopt = c(0.5, 0.5, -0.5, -0.5),
biol = c(0.5, -0.5, 0.5, -0.5),
ab = c(1, -1, -1, 1) ) )

Printing the contrasts result gives estimates, se, and T tests for each contrast. Feeding the result into
summary() and adding infer=c(T,F) gives you confidence intervals. The first component of the infer= vector
controls confidence intervals (TRUE or FALSE); the second controls tests.
adopt.contrasts

## contrast estimate SE df t.ratio p.value
## adopt 11.6 4.31 34 2.704 0.0106
## biol 15.6 4.31 34 3.609 0.0010
## ab 0.9 8.62 34 0.104 0.9174
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summary(adopt.contrasts, infer=c(T,F))

## contrast estimate SE df lower.CL upper.CL
## adopt 11.6 4.31 34 2.89 20.4
## biol 15.6 4.31 34 6.79 24.3
## ab 0.9 8.62 34 -16.61 18.4
##
## Confidence level used: 0.95

Adding joint=T gives an F test that all contrasts = 0 simultaneously. When specify k-1 contrasts for k
groups, this is equivalent to the 1 way ANOVA F test of equality of all groups.
test(adopt.contrasts, joint=T)

## df1 df2 F.ratio p.value
## 3 34 7.194 0.0007

Interpretation

No evidence of an interaction, so report main effects. You do need to make sure how you coded the contrast
(High - Low or Low - High). In other words, when the estimate is positive, is High larger or is Low larger?
Definitely affects your conclusion. If I’m not sure, I print the emmeans. Here, both contrasts were High - Low

If the Interaction was significant, you might want simple effects. Don’t currently have those. Write contrasts
for the difference of A within each level of B.

Can use spaces in the contrast name if enclose the name in quotes (single or double).

An alternative, when there are not too many cells is to get all pairwise differences and extract those you care
about. pairs() applied to an emmeans object gives you all pairwise differences. Tukey multiple comparisons
adjustment applied by default. Want to turn that off. Even if you want to adjust, it won’t be for all pairs. I
would use Bonferroni, or no adjustment.
contrast(adopt.emm, list(

'adopt in High Biol'=c(1, 0, -1,0),
'adopt in Low Biol'=c(0, 1, 0, -1) ) )

## contrast estimate SE df t.ratio p.value
## adopt in High Biol 12.1 6.27 34 1.930 0.0620
## adopt in Low Biol 11.2 5.91 34 1.895 0.0667
pairs(adopt.emm, adjust='none')

## contrast estimate SE df t.ratio p.value
## High/High - High/Low 16.0 5.91 34 2.706 0.0106
## High/High - Low/High 12.1 6.27 34 1.930 0.0620
## High/High - Low/Low 27.2 5.91 34 4.601 0.0001
## High/Low - Low/High -3.9 6.27 34 -0.622 0.5381
## High/Low - Low/Low 11.2 5.91 34 1.895 0.0667
## Low/High - Low/Low 15.1 6.27 34 2.408 0.0216

using a factor effects model:

This is specified in terms of main effects (each factor by itself) and their interaction. The : indicates the
interaction. A shortcut is to use *, which expands into the interaction and all the component main effects.
These two models are identical, except perhaps for the order of the terms. I usually write out all the terms
(first lm call) so I can control the order.
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adopt.lm2 <- lm(IQ ~ adoptive.f + biological.f + adoptive.f:biological.f,
data=adopt)

adopt.lm2 <- lm(IQ ~ adoptive.f*biological.f,
data=adopt)

You can then get marginal means and contrasts of marginal means by telling emmeans() the names of the
factors you care about. This could be both, or just one.

Specifying both adoptive and biological effects as a vector gives you the cell means. Specifying them as a list
gives you both sets of marginal means. Specifying just one factor name gives you just the marginal means for
that factor.

The note sounds scary, but it is just a reminder that you are averaging simple effects. That’s very appropriate
here because of the apparent absence of an interaction.
adopt.emm2 <- emmeans(adopt.lm2, c('adoptive.f','biological.f'))
adopt.emm2

## adoptive.f biological.f emmean SE df lower.CL upper.CL
## Low High 107.5 4.67 34 98.0 117
## High High 119.6 4.18 34 111.1 128
## Low Low 92.4 4.18 34 83.9 101
## High Low 103.6 4.18 34 95.1 112
##
## Confidence level used: 0.95
adopt.emm3 <- emmeans(adopt.lm2, list('adoptive.f','biological.f'))

## NOTE: Results may be misleading due to involvement in interactions
## NOTE: Results may be misleading due to involvement in interactions
adopt.emm3

## $`emmeans of adoptive.f`
## adoptive.f emmean SE df lower.CL upper.CL
## Low 100 3.14 34 93.6 106
## High 112 2.96 34 105.6 118
##
## Results are averaged over the levels of: biological.f
## Confidence level used: 0.95
##
## $`emmeans of biological.f`
## biological.f emmean SE df lower.CL upper.CL
## High 114 3.14 34 107 120
## Low 98 2.96 34 92 104
##
## Results are averaged over the levels of: adoptive.f
## Confidence level used: 0.95

The nice thing about the effects parameterization is that you can write contrasts in terms of the marginal
means or request all pairwise differences. When you use the list form to get multiple sets of marginal means,
contrast does the expected.
contrast(adopt.emm3, list(highlow = c(1, -1)))

## $`emmeans of adoptive.f`
## contrast estimate SE df t.ratio p.value
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## highlow -11.6 4.31 34 -2.704 0.0106
##
## Results are averaged over the levels of: biological.f
##
## $`emmeans of biological.f`
## contrast estimate SE df t.ratio p.value
## highlow 15.6 4.31 34 3.609 0.0010
##
## Results are averaged over the levels of: adoptive.f
pairs(adopt.emm3)

## $`emmeans of adoptive.f`
## contrast estimate SE df t.ratio p.value
## Low - High -11.6 4.31 34 -2.704 0.0106
##
## Results are averaged over the levels of: biological.f
##
## $`emmeans of biological.f`
## contrast estimate SE df t.ratio p.value
## High - Low 15.6 4.31 34 3.609 0.0010
##
## Results are averaged over the levels of: adoptive.f

You get simple effects easily by calculating a contrast “by” the other factor, starting with the “all combinations”
emmeans result (the vector, not the list).
contrast(adopt.emm2, list(highlow = c(1, -1)),

by='biological.f')

## biological.f = High:
## contrast estimate SE df t.ratio p.value
## highlow -12.1 6.27 34 -1.930 0.0620
##
## biological.f = Low:
## contrast estimate SE df t.ratio p.value
## highlow -11.2 5.91 34 -1.895 0.0667

The most reliable way to get type III tests is to use joint_tests() applied to the “all combinations” (i.e. the
vector with 2 variables) emmeans object. anova() gives sequential (type I tests), which are not the same for
this data set. You should make sure you understand why they are not the same here, and why they don’t
match contrast results.
joint_tests(adopt.emm2)

## model term df1 df2 F.ratio p.value
## adoptive.f 1 34 7.310 0.0106
## biological.f 1 34 13.024 0.0010
## adoptive.f:biological.f 1 34 0.011 0.9174
anova(adopt.lm2)

## Analysis of Variance Table
##
## Response: IQ
## Df Sum Sq Mean Sq F value Pr(>F)
## adoptive.f 1 1477.6 1477.63 8.4561 0.0063663 **
## biological.f 1 2291.5 2291.47 13.1135 0.0009445 ***
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## adoptive.f:biological.f 1 1.9 1.91 0.0109 0.9174370
## Residuals 34 5941.2 174.74
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Other useful things to know:

Many commonly used contrasts have pre-defined functions. See ¿contrast-methods’ for that list.
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